If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20+50t-16t^2=0
a = -16; b = 50; c = +20;
Δ = b2-4ac
Δ = 502-4·(-16)·20
Δ = 3780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3780}=\sqrt{36*105}=\sqrt{36}*\sqrt{105}=6\sqrt{105}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-6\sqrt{105}}{2*-16}=\frac{-50-6\sqrt{105}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+6\sqrt{105}}{2*-16}=\frac{-50+6\sqrt{105}}{-32} $
| Y2-20y=-100 | | 21+3y-8=11y-11-2y | | 756/2=x | | -7(a-6)-7a=-36-6a | | 1-4y=3-5y | | 189.5*4=x | | 10.6=0+a5 | | Y-(-15)=-2(x-2) | | 10.6=0+a(5) | | 14/5+1/4t=3 | | -y+5y=-13 | | 8x+5-6=18 | | 2y^2+15y-495=0 | | 6x-17x+6=23x+17x+42 | | 10/7+1/4t=4 | | 75+m=175 | | -7(-8-5a)=-12+a | | 5x+16=6x-20 | | 7x+8=49x-8 | | x=189/2 | | 75=16t | | 7+8x=4(2x+2) | | 0.1-0.01(x+3)=-0.01(1-x) | | -7(m-1)=-17-4m | | (1/3)x+5=(-2/3)x-1 | | 9(x+7)=9(x-7) | | 2(×+4)+3=6+3x | | 18=8+10(x-2) | | 1/4(8x-2)+2x=4x+3/4 | | -30+6n=-n+6(3n+6 | | -9+2x+x+2=180 | | 20=4(x+5) |